Metamath Proof Explorer


Theorem enfi

Description: Equinumerous sets have the same finiteness. For a shorter proof using ax-pow , see enfiALT . (Contributed by NM, 22-Aug-2008) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion enfi ABAFinBFin

Proof

Step Hyp Ref Expression
1 ensymfib AFinABBA
2 1 pm5.32i AFinABAFinBA
3 enfii AFinBABFin
4 2 3 sylbi AFinABBFin
5 4 expcom ABAFinBFin
6 enfii BFinABAFin
7 6 expcom ABBFinAFin
8 5 7 impbid ABAFinBFin