Metamath Proof Explorer


Theorem enfi

Description: Equinumerous sets have the same finiteness. For a shorter proof using ax-pow , see enfiALT . (Contributed by NM, 22-Aug-2008) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion enfi
|- ( A ~~ B -> ( A e. Fin <-> B e. Fin ) )

Proof

Step Hyp Ref Expression
1 ensymfib
 |-  ( A e. Fin -> ( A ~~ B <-> B ~~ A ) )
2 1 pm5.32i
 |-  ( ( A e. Fin /\ A ~~ B ) <-> ( A e. Fin /\ B ~~ A ) )
3 enfii
 |-  ( ( A e. Fin /\ B ~~ A ) -> B e. Fin )
4 2 3 sylbi
 |-  ( ( A e. Fin /\ A ~~ B ) -> B e. Fin )
5 4 expcom
 |-  ( A ~~ B -> ( A e. Fin -> B e. Fin ) )
6 enfii
 |-  ( ( B e. Fin /\ A ~~ B ) -> A e. Fin )
7 6 expcom
 |-  ( A ~~ B -> ( B e. Fin -> A e. Fin ) )
8 5 7 impbid
 |-  ( A ~~ B -> ( A e. Fin <-> B e. Fin ) )