| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isfi | 
							 |-  ( B e. Fin <-> E. x e. _om B ~~ x )  | 
						
						
							| 2 | 
							
								
							 | 
							df-rex | 
							 |-  ( E. x e. _om B ~~ x <-> E. x ( x e. _om /\ B ~~ x ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylbb | 
							 |-  ( B e. Fin -> E. x ( x e. _om /\ B ~~ x ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ensymfib | 
							 |-  ( B e. Fin -> ( B ~~ A <-> A ~~ B ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							biimparc | 
							 |-  ( ( A ~~ B /\ B e. Fin ) -> B ~~ A )  | 
						
						
							| 6 | 
							
								
							 | 
							19.41v | 
							 |-  ( E. x ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) <-> ( E. x ( x e. _om /\ B ~~ x ) /\ B ~~ A ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> x e. _om )  | 
						
						
							| 8 | 
							
								
							 | 
							nnfi | 
							 |-  ( x e. _om -> x e. Fin )  | 
						
						
							| 9 | 
							
								
							 | 
							ensymfib | 
							 |-  ( x e. Fin -> ( x ~~ B <-> B ~~ x ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							biimpar | 
							 |-  ( ( x e. Fin /\ B ~~ x ) -> x ~~ B )  | 
						
						
							| 11 | 
							
								10
							 | 
							3adant3 | 
							 |-  ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> x ~~ B )  | 
						
						
							| 12 | 
							
								
							 | 
							entrfil | 
							 |-  ( ( x e. Fin /\ x ~~ B /\ B ~~ A ) -> x ~~ A )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syld3an2 | 
							 |-  ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> x ~~ A )  | 
						
						
							| 14 | 
							
								
							 | 
							ensymfib | 
							 |-  ( x e. Fin -> ( x ~~ A <-> A ~~ x ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3ad2ant1 | 
							 |-  ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> ( x ~~ A <-> A ~~ x ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							mpbid | 
							 |-  ( ( x e. Fin /\ B ~~ x /\ B ~~ A ) -> A ~~ x )  | 
						
						
							| 17 | 
							
								8 16
							 | 
							syl3an1 | 
							 |-  ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> A ~~ x )  | 
						
						
							| 18 | 
							
								7 17
							 | 
							jca | 
							 |-  ( ( x e. _om /\ B ~~ x /\ B ~~ A ) -> ( x e. _om /\ A ~~ x ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							3expa | 
							 |-  ( ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> ( x e. _om /\ A ~~ x ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eximi | 
							 |-  ( E. x ( ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> E. x ( x e. _om /\ A ~~ x ) )  | 
						
						
							| 21 | 
							
								6 20
							 | 
							sylbir | 
							 |-  ( ( E. x ( x e. _om /\ B ~~ x ) /\ B ~~ A ) -> E. x ( x e. _om /\ A ~~ x ) )  | 
						
						
							| 22 | 
							
								3 5 21
							 | 
							syl2an2 | 
							 |-  ( ( A ~~ B /\ B e. Fin ) -> E. x ( x e. _om /\ A ~~ x ) )  | 
						
						
							| 23 | 
							
								
							 | 
							df-rex | 
							 |-  ( E. x e. _om A ~~ x <-> E. x ( x e. _om /\ A ~~ x ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							sylibr | 
							 |-  ( ( A ~~ B /\ B e. Fin ) -> E. x e. _om A ~~ x )  | 
						
						
							| 25 | 
							
								
							 | 
							isfi | 
							 |-  ( A e. Fin <-> E. x e. _om A ~~ x )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							sylibr | 
							 |-  ( ( A ~~ B /\ B e. Fin ) -> A e. Fin )  | 
						
						
							| 27 | 
							
								26
							 | 
							ancoms | 
							 |-  ( ( B e. Fin /\ A ~~ B ) -> A e. Fin )  |