Metamath Proof Explorer


Theorem dif1enlem

Description: Lemma for rexdif1en and dif1en . (Contributed by BTernaryTau, 18-Aug-2024)

Ref Expression
Assertion dif1enlem F V M ω F : A 1-1 onto suc M A F -1 M M

Proof

Step Hyp Ref Expression
1 simp1 F V M ω F : A 1-1 onto suc M F V
2 sucidg M ω M suc M
3 dff1o3 F : A 1-1 onto suc M F : A onto suc M Fun F -1
4 3 simprbi F : A 1-1 onto suc M Fun F -1
5 4 adantr F : A 1-1 onto suc M M suc M Fun F -1
6 f1ofo F : A 1-1 onto suc M F : A onto suc M
7 f1ofn F : A 1-1 onto suc M F Fn A
8 fnresdm F Fn A F A = F
9 foeq1 F A = F F A : A onto suc M F : A onto suc M
10 7 8 9 3syl F : A 1-1 onto suc M F A : A onto suc M F : A onto suc M
11 6 10 mpbird F : A 1-1 onto suc M F A : A onto suc M
12 11 adantr F : A 1-1 onto suc M M suc M F A : A onto suc M
13 7 adantr F : A 1-1 onto suc M M suc M F Fn A
14 f1ocnvdm F : A 1-1 onto suc M M suc M F -1 M A
15 f1ocnvfv2 F : A 1-1 onto suc M M suc M F F -1 M = M
16 snidg M suc M M M
17 16 adantl F : A 1-1 onto suc M M suc M M M
18 15 17 eqeltrd F : A 1-1 onto suc M M suc M F F -1 M M
19 fressnfv F Fn A F -1 M A F F -1 M : F -1 M M F F -1 M M
20 19 biimp3ar F Fn A F -1 M A F F -1 M M F F -1 M : F -1 M M
21 13 14 18 20 syl3anc F : A 1-1 onto suc M M suc M F F -1 M : F -1 M M
22 disjsn A F -1 M = ¬ F -1 M A
23 22 con2bii F -1 M A ¬ A F -1 M =
24 14 23 sylib F : A 1-1 onto suc M M suc M ¬ A F -1 M =
25 fnresdisj F Fn A A F -1 M = F F -1 M =
26 7 25 syl F : A 1-1 onto suc M A F -1 M = F F -1 M =
27 26 adantr F : A 1-1 onto suc M M suc M A F -1 M = F F -1 M =
28 24 27 mtbid F : A 1-1 onto suc M M suc M ¬ F F -1 M =
29 28 neqned F : A 1-1 onto suc M M suc M F F -1 M
30 foconst F F -1 M : F -1 M M F F -1 M F F -1 M : F -1 M onto M
31 21 29 30 syl2anc F : A 1-1 onto suc M M suc M F F -1 M : F -1 M onto M
32 resdif Fun F -1 F A : A onto suc M F F -1 M : F -1 M onto M F A F -1 M : A F -1 M 1-1 onto suc M M
33 5 12 31 32 syl3anc F : A 1-1 onto suc M M suc M F A F -1 M : A F -1 M 1-1 onto suc M M
34 2 33 sylan2 F : A 1-1 onto suc M M ω F A F -1 M : A F -1 M 1-1 onto suc M M
35 nnord M ω Ord M
36 orddif Ord M M = suc M M
37 35 36 syl M ω M = suc M M
38 37 f1oeq3d M ω F A F -1 M : A F -1 M 1-1 onto M F A F -1 M : A F -1 M 1-1 onto suc M M
39 38 adantl F : A 1-1 onto suc M M ω F A F -1 M : A F -1 M 1-1 onto M F A F -1 M : A F -1 M 1-1 onto suc M M
40 34 39 mpbird F : A 1-1 onto suc M M ω F A F -1 M : A F -1 M 1-1 onto M
41 40 ancoms M ω F : A 1-1 onto suc M F A F -1 M : A F -1 M 1-1 onto M
42 41 3adant1 F V M ω F : A 1-1 onto suc M F A F -1 M : A F -1 M 1-1 onto M
43 resexg F V F A F -1 M V
44 f1oen3g F A F -1 M V F A F -1 M : A F -1 M 1-1 onto M A F -1 M M
45 43 44 sylan F V F A F -1 M : A F -1 M 1-1 onto M A F -1 M M
46 1 42 45 syl2anc F V M ω F : A 1-1 onto suc M A F -1 M M