Metamath Proof Explorer


Theorem resdif

Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009)

Ref Expression
Assertion resdif FunF-1FA:AontoCFB:BontoDFAB:AB1-1 ontoCD

Proof

Step Hyp Ref Expression
1 fofun FA:AontoCFunFA
2 difss ABA
3 fof FA:AontoCFA:AC
4 3 fdmd FA:AontoCdomFA=A
5 2 4 sseqtrrid FA:AontoCABdomFA
6 fores FunFAABdomFAFAAB:ABontoFAAB
7 1 5 6 syl2anc FA:AontoCFAAB:ABontoFAAB
8 resres FAAB=FAAB
9 indif AAB=AB
10 9 reseq2i FAAB=FAB
11 8 10 eqtri FAAB=FAB
12 foeq1 FAAB=FABFAAB:ABontoFAABFAB:ABontoFAAB
13 11 12 ax-mp FAAB:ABontoFAABFAB:ABontoFAAB
14 11 rneqi ranFAAB=ranFAB
15 df-ima FAAB=ranFAAB
16 df-ima FAB=ranFAB
17 14 15 16 3eqtr4i FAAB=FAB
18 foeq3 FAAB=FABFAB:ABontoFAABFAB:ABontoFAB
19 17 18 ax-mp FAB:ABontoFAABFAB:ABontoFAB
20 13 19 bitri FAAB:ABontoFAABFAB:ABontoFAB
21 7 20 sylib FA:AontoCFAB:ABontoFAB
22 funres11 FunF-1FunFAB-1
23 dff1o3 FAB:AB1-1 ontoFABFAB:ABontoFABFunFAB-1
24 23 biimpri FAB:ABontoFABFunFAB-1FAB:AB1-1 ontoFAB
25 21 22 24 syl2anr FunF-1FA:AontoCFAB:AB1-1 ontoFAB
26 25 3adant3 FunF-1FA:AontoCFB:BontoDFAB:AB1-1 ontoFAB
27 df-ima FA=ranFA
28 forn FA:AontoCranFA=C
29 27 28 eqtrid FA:AontoCFA=C
30 df-ima FB=ranFB
31 forn FB:BontoDranFB=D
32 30 31 eqtrid FB:BontoDFB=D
33 29 32 anim12i FA:AontoCFB:BontoDFA=CFB=D
34 imadif FunF-1FAB=FAFB
35 difeq12 FA=CFB=DFAFB=CD
36 34 35 sylan9eq FunF-1FA=CFB=DFAB=CD
37 33 36 sylan2 FunF-1FA:AontoCFB:BontoDFAB=CD
38 37 3impb FunF-1FA:AontoCFB:BontoDFAB=CD
39 38 f1oeq3d FunF-1FA:AontoCFB:BontoDFAB:AB1-1 ontoFABFAB:AB1-1 ontoCD
40 26 39 mpbid FunF-1FA:AontoCFB:BontoDFAB:AB1-1 ontoCD