Metamath Proof Explorer


Theorem fressnfv

Description: The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004)

Ref Expression
Assertion fressnfv F Fn A B A F B : B C F B C

Proof

Step Hyp Ref Expression
1 sneq x = B x = B
2 reseq2 x = B F x = F B
3 2 feq1d x = B F x : x C F B : x C
4 feq2 x = B F B : x C F B : B C
5 3 4 bitrd x = B F x : x C F B : B C
6 1 5 syl x = B F x : x C F B : B C
7 fveq2 x = B F x = F B
8 7 eleq1d x = B F x C F B C
9 6 8 bibi12d x = B F x : x C F x C F B : B C F B C
10 9 imbi2d x = B F Fn A F x : x C F x C F Fn A F B : B C F B C
11 fnressn F Fn A x A F x = x F x
12 vsnid x x
13 fvres x x F x x = F x
14 12 13 ax-mp F x x = F x
15 14 opeq2i x F x x = x F x
16 15 sneqi x F x x = x F x
17 16 eqeq2i F x = x F x x F x = x F x
18 vex x V
19 18 fsn2 F x : x C F x x C F x = x F x x
20 iba F x = x F x x F x x C F x x C F x = x F x x
21 14 eleq1i F x x C F x C
22 20 21 bitr3di F x = x F x x F x x C F x = x F x x F x C
23 19 22 bitrid F x = x F x x F x : x C F x C
24 17 23 sylbir F x = x F x F x : x C F x C
25 11 24 syl F Fn A x A F x : x C F x C
26 25 expcom x A F Fn A F x : x C F x C
27 10 26 vtoclga B A F Fn A F B : B C F B C
28 27 impcom F Fn A B A F B : B C F B C