Metamath Proof Explorer


Theorem fnressn

Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004)

Ref Expression
Assertion fnressn FFnABAFB=BFB

Proof

Step Hyp Ref Expression
1 sneq x=Bx=B
2 1 reseq2d x=BFx=FB
3 fveq2 x=BFx=FB
4 opeq12 x=BFx=FBxFx=BFB
5 3 4 mpdan x=BxFx=BFB
6 5 sneqd x=BxFx=BFB
7 2 6 eqeq12d x=BFx=xFxFB=BFB
8 7 imbi2d x=BFFnAFx=xFxFFnAFB=BFB
9 vex xV
10 9 snss xAxA
11 fnssres FFnAxAFxFnx
12 10 11 sylan2b FFnAxAFxFnx
13 dffn2 FxFnxFx:xV
14 9 fsn2 Fx:xVFxxVFx=xFxx
15 fvex FxxV
16 15 biantrur Fx=xFxxFxxVFx=xFxx
17 vsnid xx
18 fvres xxFxx=Fx
19 17 18 ax-mp Fxx=Fx
20 19 opeq2i xFxx=xFx
21 20 sneqi xFxx=xFx
22 21 eqeq2i Fx=xFxxFx=xFx
23 16 22 bitr3i FxxVFx=xFxxFx=xFx
24 13 14 23 3bitri FxFnxFx=xFx
25 12 24 sylib FFnAxAFx=xFx
26 25 expcom xAFFnAFx=xFx
27 8 26 vtoclga BAFFnAFB=BFB
28 27 impcom FFnABAFB=BFB