Metamath Proof Explorer


Theorem sneqd

Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004)

Ref Expression
Hypothesis sneqd.1 φ A = B
Assertion sneqd φ A = B

Proof

Step Hyp Ref Expression
1 sneqd.1 φ A = B
2 sneq A = B A = B
3 1 2 syl φ A = B