Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sneqd.1 | |- ( ph -> A = B ) |
|
Assertion | sneqd | |- ( ph -> { A } = { B } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqd.1 | |- ( ph -> A = B ) |
|
2 | sneq | |- ( A = B -> { A } = { B } ) |
|
3 | 1 2 | syl | |- ( ph -> { A } = { B } ) |