| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sneq | 
							 |-  ( x = B -> { x } = { B } ) | 
						
						
							| 2 | 
							
								1
							 | 
							reseq2d | 
							 |-  ( x = B -> ( F |` { x } ) = ( F |` { B } ) ) | 
						
						
							| 3 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = B -> ( F ` x ) = ( F ` B ) )  | 
						
						
							| 4 | 
							
								
							 | 
							opeq12 | 
							 |-  ( ( x = B /\ ( F ` x ) = ( F ` B ) ) -> <. x , ( F ` x ) >. = <. B , ( F ` B ) >. )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mpdan | 
							 |-  ( x = B -> <. x , ( F ` x ) >. = <. B , ( F ` B ) >. )  | 
						
						
							| 6 | 
							
								5
							 | 
							sneqd | 
							 |-  ( x = B -> { <. x , ( F ` x ) >. } = { <. B , ( F ` B ) >. } ) | 
						
						
							| 7 | 
							
								2 6
							 | 
							eqeq12d | 
							 |-  ( x = B -> ( ( F |` { x } ) = { <. x , ( F ` x ) >. } <-> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) ) | 
						
						
							| 8 | 
							
								7
							 | 
							imbi2d | 
							 |-  ( x = B -> ( ( F Fn A -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) <-> ( F Fn A -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) ) ) | 
						
						
							| 9 | 
							
								
							 | 
							vex | 
							 |-  x e. _V  | 
						
						
							| 10 | 
							
								9
							 | 
							snss | 
							 |-  ( x e. A <-> { x } C_ A ) | 
						
						
							| 11 | 
							
								
							 | 
							fnssres | 
							 |-  ( ( F Fn A /\ { x } C_ A ) -> ( F |` { x } ) Fn { x } ) | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylan2b | 
							 |-  ( ( F Fn A /\ x e. A ) -> ( F |` { x } ) Fn { x } ) | 
						
						
							| 13 | 
							
								
							 | 
							dffn2 | 
							 |-  ( ( F |` { x } ) Fn { x } <-> ( F |` { x } ) : { x } --> _V ) | 
						
						
							| 14 | 
							
								9
							 | 
							fsn2 | 
							 |-  ( ( F |` { x } ) : { x } --> _V <-> ( ( ( F |` { x } ) ` x ) e. _V /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) ) | 
						
						
							| 15 | 
							
								
							 | 
							fvex | 
							 |-  ( ( F |` { x } ) ` x ) e. _V | 
						
						
							| 16 | 
							
								15
							 | 
							biantrur | 
							 |-  ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } <-> ( ( ( F |` { x } ) ` x ) e. _V /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) ) | 
						
						
							| 17 | 
							
								
							 | 
							vsnid | 
							 |-  x e. { x } | 
						
						
							| 18 | 
							
								
							 | 
							fvres | 
							 |-  ( x e. { x } -> ( ( F |` { x } ) ` x ) = ( F ` x ) ) | 
						
						
							| 19 | 
							
								17 18
							 | 
							ax-mp | 
							 |-  ( ( F |` { x } ) ` x ) = ( F ` x ) | 
						
						
							| 20 | 
							
								19
							 | 
							opeq2i | 
							 |-  <. x , ( ( F |` { x } ) ` x ) >. = <. x , ( F ` x ) >. | 
						
						
							| 21 | 
							
								20
							 | 
							sneqi | 
							 |-  { <. x , ( ( F |` { x } ) ` x ) >. } = { <. x , ( F ` x ) >. } | 
						
						
							| 22 | 
							
								21
							 | 
							eqeq2i | 
							 |-  ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } <-> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) | 
						
						
							| 23 | 
							
								16 22
							 | 
							bitr3i | 
							 |-  ( ( ( ( F |` { x } ) ` x ) e. _V /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) <-> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) | 
						
						
							| 24 | 
							
								13 14 23
							 | 
							3bitri | 
							 |-  ( ( F |` { x } ) Fn { x } <-> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) | 
						
						
							| 25 | 
							
								12 24
							 | 
							sylib | 
							 |-  ( ( F Fn A /\ x e. A ) -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) | 
						
						
							| 26 | 
							
								25
							 | 
							expcom | 
							 |-  ( x e. A -> ( F Fn A -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) ) | 
						
						
							| 27 | 
							
								8 26
							 | 
							vtoclga | 
							 |-  ( B e. A -> ( F Fn A -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) ) | 
						
						
							| 28 | 
							
								27
							 | 
							impcom | 
							 |-  ( ( F Fn A /\ B e. A ) -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) |