Metamath Proof Explorer


Theorem sucidg

Description: Part of Proposition 7.23 of TakeutiZaring p. 41 (generalized). Lemma 1.7 of Schloeder p. 1. (Contributed by NM, 25-Mar-1995) (Proof shortened by Scott Fenton, 20-Feb-2012)

Ref Expression
Assertion sucidg AVAsucA

Proof

Step Hyp Ref Expression
1 eqid A=A
2 1 olci AAA=A
3 elsucg AVAsucAAAA=A
4 2 3 mpbiri AVAsucA