Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Derive the Axiom of Pairing
vsnex
Next ⟩
snexg
Metamath Proof Explorer
Ascii
Unicode
Theorem
vsnex
Description:
A singleton built on a setvar is a set.
(Contributed by
BJ
, 15-Jan-2025)
Ref
Expression
Assertion
vsnex
⊢
x
∈
V
Proof
Step
Hyp
Ref
Expression
1
dfsn2
⊢
x
=
x
x
2
zfpair2
⊢
x
x
∈
V
3
1
2
eqeltri
⊢
x
∈
V