Metamath Proof Explorer


Theorem ssundif

Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007)

Ref Expression
Assertion ssundif ABCABC

Proof

Step Hyp Ref Expression
1 pm5.6 xA¬xBxCxAxBxC
2 eldif xABxA¬xB
3 2 imbi1i xABxCxA¬xBxC
4 elun xBCxBxC
5 4 imbi2i xAxBCxAxBxC
6 1 3 5 3bitr4ri xAxBCxABxC
7 6 albii xxAxBCxxABxC
8 dfss2 ABCxxAxBC
9 dfss2 ABCxxABxC
10 7 8 9 3bitr4i ABCABC