Metamath Proof Explorer


Theorem difcom

Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007)

Ref Expression
Assertion difcom ABCACB

Proof

Step Hyp Ref Expression
1 uncom BC=CB
2 1 sseq2i ABCACB
3 ssundif ABCABC
4 ssundif ACBACB
5 2 3 4 3bitr3i ABCACB