Metamath Proof Explorer


Theorem lelttrd

Description: Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
letrd.3 φC
lelttrd.4 φAB
lelttrd.5 φB<C
Assertion lelttrd φA<C

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 letrd.3 φC
4 lelttrd.4 φAB
5 lelttrd.5 φB<C
6 lelttr ABCABB<CA<C
7 1 2 3 6 syl3anc φABB<CA<C
8 4 5 7 mp2and φA<C