Metamath Proof Explorer


Theorem ltadd2dd

Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
letrd.3 φ C
ltletrd.4 φ A < B
Assertion ltadd2dd φ C + A < C + B

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 letrd.3 φ C
4 ltletrd.4 φ A < B
5 1 2 3 ltadd2d φ A < B C + A < C + B
6 4 5 mpbid φ C + A < C + B