Metamath Proof Explorer


Theorem ltadd2dd

Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses ltd.1
|- ( ph -> A e. RR )
ltd.2
|- ( ph -> B e. RR )
letrd.3
|- ( ph -> C e. RR )
ltletrd.4
|- ( ph -> A < B )
Assertion ltadd2dd
|- ( ph -> ( C + A ) < ( C + B ) )

Proof

Step Hyp Ref Expression
1 ltd.1
 |-  ( ph -> A e. RR )
2 ltd.2
 |-  ( ph -> B e. RR )
3 letrd.3
 |-  ( ph -> C e. RR )
4 ltletrd.4
 |-  ( ph -> A < B )
5 1 2 3 ltadd2d
 |-  ( ph -> ( A < B <-> ( C + A ) < ( C + B ) ) )
6 4 5 mpbid
 |-  ( ph -> ( C + A ) < ( C + B ) )