Metamath Proof Explorer
Description: Transitive law deduction for 'less than', 'less than or equal to'.
(Contributed by NM, 9-Jan-2006)
|
|
Ref |
Expression |
|
Hypotheses |
ltd.1 |
|
|
|
ltd.2 |
|
|
|
letrd.3 |
|
|
|
ltletrd.4 |
|
|
|
ltletrd.5 |
|
|
Assertion |
ltletrd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltd.1 |
|
2 |
|
ltd.2 |
|
3 |
|
letrd.3 |
|
4 |
|
ltletrd.4 |
|
5 |
|
ltletrd.5 |
|
6 |
|
ltletr |
|
7 |
1 2 3 6
|
syl3anc |
|
8 |
4 5 7
|
mp2and |
|