Metamath Proof Explorer


Theorem ltletrd

Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
letrd.3 φ C
ltletrd.4 φ A < B
ltletrd.5 φ B C
Assertion ltletrd φ A < C

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 letrd.3 φ C
4 ltletrd.4 φ A < B
5 ltletrd.5 φ B C
6 ltletr A B C A < B B C A < C
7 1 2 3 6 syl3anc φ A < B B C A < C
8 4 5 7 mp2and φ A < C