Metamath Proof Explorer


Theorem ltletrd

Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
letrd.3 φC
ltletrd.4 φA<B
ltletrd.5 φBC
Assertion ltletrd φA<C

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 letrd.3 φC
4 ltletrd.4 φA<B
5 ltletrd.5 φBC
6 ltletr ABCA<BBCA<C
7 1 2 3 6 syl3anc φA<BBCA<C
8 4 5 7 mp2and φA<C