Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
ltletr
Next ⟩
ltleletr
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltletr
Description:
Transitive law.
(Contributed by
NM
, 25-Aug-1999)
Ref
Expression
Assertion
ltletr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
<
B
∧
B
≤
C
→
A
<
C
Proof
Step
Hyp
Ref
Expression
1
leloe
⊢
B
∈
ℝ
∧
C
∈
ℝ
→
B
≤
C
↔
B
<
C
∨
B
=
C
2
1
3adant1
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
≤
C
↔
B
<
C
∨
B
=
C
3
lttr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
<
B
∧
B
<
C
→
A
<
C
4
3
expcomd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
<
C
→
A
<
B
→
A
<
C
5
breq2
⊢
B
=
C
→
A
<
B
↔
A
<
C
6
5
biimpd
⊢
B
=
C
→
A
<
B
→
A
<
C
7
6
a1i
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
=
C
→
A
<
B
→
A
<
C
8
4
7
jaod
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
<
C
∨
B
=
C
→
A
<
B
→
A
<
C
9
2
8
sylbid
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
≤
C
→
A
<
B
→
A
<
C
10
9
impcomd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
<
B
∧
B
≤
C
→
A
<
C