Metamath Proof Explorer


Theorem ltleletr

Description: Transitive law, weaker form of ltletr . (Contributed by AV, 14-Oct-2018)

Ref Expression
Assertion ltleletr ABCA<BBCAC

Proof

Step Hyp Ref Expression
1 3simpb ABCAC
2 ltletr ABCA<BBCA<C
3 ltle ACA<CAC
4 1 2 3 sylsyld ABCA<BBCAC