Metamath Proof Explorer


Theorem lelttr

Description: Transitive law. (Contributed by NM, 23-May-1999)

Ref Expression
Assertion lelttr A B C A B B < C A < C

Proof

Step Hyp Ref Expression
1 leloe A B A B A < B A = B
2 1 3adant3 A B C A B A < B A = B
3 lttr A B C A < B B < C A < C
4 3 expd A B C A < B B < C A < C
5 breq1 A = B A < C B < C
6 5 biimprd A = B B < C A < C
7 6 a1i A B C A = B B < C A < C
8 4 7 jaod A B C A < B A = B B < C A < C
9 2 8 sylbid A B C A B B < C A < C
10 9 impd A B C A B B < C A < C