Metamath Proof Explorer


Theorem elfzm11

Description: Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion elfzm11 MNKMN1KMKK<N

Proof

Step Hyp Ref Expression
1 peano2zm NN1
2 elfz1 MN1KMN1KMKKN1
3 1 2 sylan2 MNKMN1KMKKN1
4 zltlem1 KNK<NKN1
5 4 anbi2d KNMKK<NMKKN1
6 5 expcom NKMKK<NMKKN1
7 6 pm5.32d NKMKK<NKMKKN1
8 3anass KMKK<NKMKK<N
9 3anass KMKKN1KMKKN1
10 7 8 9 3bitr4g NKMKK<NKMKKN1
11 10 adantl MNKMKK<NKMKKN1
12 3 11 bitr4d MNKMN1KMKK<N