Metamath Proof Explorer


Theorem uzsplit

Description: Express an upper integer set as the disjoint (see uzdisj ) union of the first N values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014)

Ref Expression
Assertion uzsplit NMM=MN1N

Proof

Step Hyp Ref Expression
1 eluzelre NMN
2 eluzelre kMk
3 lelttric NkNkk<N
4 1 2 3 syl2an NMkMNkk<N
5 eluzelz NMN
6 eluzelz kMk
7 eluz NkkNNk
8 5 6 7 syl2an NMkMkNNk
9 eluzle kMMk
10 6 9 jca kMkMk
11 10 adantl NMkMkMk
12 eluzel2 kMM
13 elfzm11 MNkMN1kMkk<N
14 df-3an kMkk<NkMkk<N
15 13 14 bitrdi MNkMN1kMkk<N
16 12 5 15 syl2anr NMkMkMN1kMkk<N
17 11 16 mpbirand NMkMkMN1k<N
18 8 17 orbi12d NMkMkNkMN1Nkk<N
19 4 18 mpbird NMkMkNkMN1
20 19 orcomd NMkMkMN1kN
21 20 ex NMkMkMN1kN
22 elfzuz kMN1kM
23 22 a1i NMkMN1kM
24 uztrn kNNMkM
25 24 expcom NMkNkM
26 23 25 jaod NMkMN1kNkM
27 21 26 impbid NMkMkMN1kN
28 elun kMN1NkMN1kN
29 27 28 bitr4di NMkMkMN1N
30 29 eqrdv NMM=MN1N