Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
lelttric
Next ⟩
ltlecasei
Metamath Proof Explorer
Ascii
Unicode
Theorem
lelttric
Description:
Trichotomy law.
(Contributed by
NM
, 4-Apr-2005)
Ref
Expression
Assertion
lelttric
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
∨
B
<
A
Proof
Step
Hyp
Ref
Expression
1
pm2.1
⊢
¬
B
<
A
∨
B
<
A
2
lenlt
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
↔
¬
B
<
A
3
2
orbi1d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
∨
B
<
A
↔
¬
B
<
A
∨
B
<
A
4
1
3
mpbiri
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
∨
B
<
A