Metamath Proof Explorer


Theorem lelttric

Description: Trichotomy law. (Contributed by NM, 4-Apr-2005)

Ref Expression
Assertion lelttric ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵𝐵 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 pm2.1 ( ¬ 𝐵 < 𝐴𝐵 < 𝐴 )
2 lenlt ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )
3 2 orbi1d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴𝐵𝐵 < 𝐴 ) ↔ ( ¬ 𝐵 < 𝐴𝐵 < 𝐴 ) ) )
4 1 3 mpbiri ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵𝐵 < 𝐴 ) )