Metamath Proof Explorer


Theorem seqshft2

Description: Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqshft2.1 φNM
seqshft2.2 φK
seqshft2.3 φkMNFk=Gk+K
Assertion seqshft2 φseqM+˙FN=seqM+K+˙GN+K

Proof

Step Hyp Ref Expression
1 seqshft2.1 φNM
2 seqshft2.2 φK
3 seqshft2.3 φkMNFk=Gk+K
4 eluzfz2 NMNMN
5 1 4 syl φNMN
6 eleq1 x=MxMNMMN
7 fveq2 x=MseqM+˙Fx=seqM+˙FM
8 fvoveq1 x=MseqM+K+˙Gx+K=seqM+K+˙GM+K
9 7 8 eqeq12d x=MseqM+˙Fx=seqM+K+˙Gx+KseqM+˙FM=seqM+K+˙GM+K
10 6 9 imbi12d x=MxMNseqM+˙Fx=seqM+K+˙Gx+KMMNseqM+˙FM=seqM+K+˙GM+K
11 10 imbi2d x=MφxMNseqM+˙Fx=seqM+K+˙Gx+KφMMNseqM+˙FM=seqM+K+˙GM+K
12 eleq1 x=nxMNnMN
13 fveq2 x=nseqM+˙Fx=seqM+˙Fn
14 fvoveq1 x=nseqM+K+˙Gx+K=seqM+K+˙Gn+K
15 13 14 eqeq12d x=nseqM+˙Fx=seqM+K+˙Gx+KseqM+˙Fn=seqM+K+˙Gn+K
16 12 15 imbi12d x=nxMNseqM+˙Fx=seqM+K+˙Gx+KnMNseqM+˙Fn=seqM+K+˙Gn+K
17 16 imbi2d x=nφxMNseqM+˙Fx=seqM+K+˙Gx+KφnMNseqM+˙Fn=seqM+K+˙Gn+K
18 eleq1 x=n+1xMNn+1MN
19 fveq2 x=n+1seqM+˙Fx=seqM+˙Fn+1
20 fvoveq1 x=n+1seqM+K+˙Gx+K=seqM+K+˙Gn+1+K
21 19 20 eqeq12d x=n+1seqM+˙Fx=seqM+K+˙Gx+KseqM+˙Fn+1=seqM+K+˙Gn+1+K
22 18 21 imbi12d x=n+1xMNseqM+˙Fx=seqM+K+˙Gx+Kn+1MNseqM+˙Fn+1=seqM+K+˙Gn+1+K
23 22 imbi2d x=n+1φxMNseqM+˙Fx=seqM+K+˙Gx+Kφn+1MNseqM+˙Fn+1=seqM+K+˙Gn+1+K
24 eleq1 x=NxMNNMN
25 fveq2 x=NseqM+˙Fx=seqM+˙FN
26 fvoveq1 x=NseqM+K+˙Gx+K=seqM+K+˙GN+K
27 25 26 eqeq12d x=NseqM+˙Fx=seqM+K+˙Gx+KseqM+˙FN=seqM+K+˙GN+K
28 24 27 imbi12d x=NxMNseqM+˙Fx=seqM+K+˙Gx+KNMNseqM+˙FN=seqM+K+˙GN+K
29 28 imbi2d x=NφxMNseqM+˙Fx=seqM+K+˙Gx+KφNMNseqM+˙FN=seqM+K+˙GN+K
30 fveq2 k=MFk=FM
31 fvoveq1 k=MGk+K=GM+K
32 30 31 eqeq12d k=MFk=Gk+KFM=GM+K
33 3 ralrimiva φkMNFk=Gk+K
34 eluzfz1 NMMMN
35 1 34 syl φMMN
36 32 33 35 rspcdva φFM=GM+K
37 eluzel2 NMM
38 1 37 syl φM
39 seq1 MseqM+˙FM=FM
40 38 39 syl φseqM+˙FM=FM
41 38 2 zaddcld φM+K
42 seq1 M+KseqM+K+˙GM+K=GM+K
43 41 42 syl φseqM+K+˙GM+K=GM+K
44 36 40 43 3eqtr4d φseqM+˙FM=seqM+K+˙GM+K
45 44 a1i13 MφMMNseqM+˙FM=seqM+K+˙GM+K
46 peano2fzr nMn+1MNnMN
47 46 adantl φnMn+1MNnMN
48 47 expr φnMn+1MNnMN
49 48 imim1d φnMnMNseqM+˙Fn=seqM+K+˙Gn+Kn+1MNseqM+˙Fn=seqM+K+˙Gn+K
50 oveq1 seqM+˙Fn=seqM+K+˙Gn+KseqM+˙Fn+˙Fn+1=seqM+K+˙Gn+K+˙Fn+1
51 simprl φnMn+1MNnM
52 seqp1 nMseqM+˙Fn+1=seqM+˙Fn+˙Fn+1
53 51 52 syl φnMn+1MNseqM+˙Fn+1=seqM+˙Fn+˙Fn+1
54 2 adantr φnMn+1MNK
55 eluzadd nMKn+KM+K
56 51 54 55 syl2anc φnMn+1MNn+KM+K
57 seqp1 n+KM+KseqM+K+˙Gn+K+1=seqM+K+˙Gn+K+˙Gn+K+1
58 56 57 syl φnMn+1MNseqM+K+˙Gn+K+1=seqM+K+˙Gn+K+˙Gn+K+1
59 eluzelz nMn
60 51 59 syl φnMn+1MNn
61 zcn nn
62 zcn KK
63 ax-1cn 1
64 add32 n1Kn+1+K=n+K+1
65 63 64 mp3an2 nKn+1+K=n+K+1
66 61 62 65 syl2an nKn+1+K=n+K+1
67 60 54 66 syl2anc φnMn+1MNn+1+K=n+K+1
68 67 fveq2d φnMn+1MNseqM+K+˙Gn+1+K=seqM+K+˙Gn+K+1
69 fveq2 k=n+1Fk=Fn+1
70 fvoveq1 k=n+1Gk+K=Gn+1+K
71 69 70 eqeq12d k=n+1Fk=Gk+KFn+1=Gn+1+K
72 33 adantr φnMn+1MNkMNFk=Gk+K
73 simprr φnMn+1MNn+1MN
74 71 72 73 rspcdva φnMn+1MNFn+1=Gn+1+K
75 67 fveq2d φnMn+1MNGn+1+K=Gn+K+1
76 74 75 eqtrd φnMn+1MNFn+1=Gn+K+1
77 76 oveq2d φnMn+1MNseqM+K+˙Gn+K+˙Fn+1=seqM+K+˙Gn+K+˙Gn+K+1
78 58 68 77 3eqtr4d φnMn+1MNseqM+K+˙Gn+1+K=seqM+K+˙Gn+K+˙Fn+1
79 53 78 eqeq12d φnMn+1MNseqM+˙Fn+1=seqM+K+˙Gn+1+KseqM+˙Fn+˙Fn+1=seqM+K+˙Gn+K+˙Fn+1
80 50 79 imbitrrid φnMn+1MNseqM+˙Fn=seqM+K+˙Gn+KseqM+˙Fn+1=seqM+K+˙Gn+1+K
81 49 80 animpimp2impd nMφnMNseqM+˙Fn=seqM+K+˙Gn+Kφn+1MNseqM+˙Fn+1=seqM+K+˙Gn+1+K
82 11 17 23 29 45 81 uzind4 NMφNMNseqM+˙FN=seqM+K+˙GN+K
83 1 82 mpcom φNMNseqM+˙FN=seqM+K+˙GN+K
84 5 83 mpd φseqM+˙FN=seqM+K+˙GN+K