Metamath Proof Explorer


Theorem zaddcld

Description: Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses zred.1 φA
zaddcld.1 φB
Assertion zaddcld φA+B

Proof

Step Hyp Ref Expression
1 zred.1 φA
2 zaddcld.1 φB
3 zaddcl ABA+B
4 1 2 3 syl2anc φA+B