Metamath Proof Explorer


Theorem zaddcld

Description: Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses zred.1
|- ( ph -> A e. ZZ )
zaddcld.1
|- ( ph -> B e. ZZ )
Assertion zaddcld
|- ( ph -> ( A + B ) e. ZZ )

Proof

Step Hyp Ref Expression
1 zred.1
 |-  ( ph -> A e. ZZ )
2 zaddcld.1
 |-  ( ph -> B e. ZZ )
3 zaddcl
 |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ )
4 1 2 3 syl2anc
 |-  ( ph -> ( A + B ) e. ZZ )