Metamath Proof Explorer


Theorem seqm1

Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Assertion seqm1 M N M + 1 seq M + ˙ F N = seq M + ˙ F N 1 + ˙ F N

Proof

Step Hyp Ref Expression
1 eluzp1m1 M N M + 1 N 1 M
2 seqp1 N 1 M seq M + ˙ F N - 1 + 1 = seq M + ˙ F N 1 + ˙ F N - 1 + 1
3 1 2 syl M N M + 1 seq M + ˙ F N - 1 + 1 = seq M + ˙ F N 1 + ˙ F N - 1 + 1
4 eluzelcn N M + 1 N
5 ax-1cn 1
6 npcan N 1 N - 1 + 1 = N
7 4 5 6 sylancl N M + 1 N - 1 + 1 = N
8 7 adantl M N M + 1 N - 1 + 1 = N
9 8 fveq2d M N M + 1 seq M + ˙ F N - 1 + 1 = seq M + ˙ F N
10 8 fveq2d M N M + 1 F N - 1 + 1 = F N
11 10 oveq2d M N M + 1 seq M + ˙ F N 1 + ˙ F N - 1 + 1 = seq M + ˙ F N 1 + ˙ F N
12 3 9 11 3eqtr3d M N M + 1 seq M + ˙ F N = seq M + ˙ F N 1 + ˙ F N