Metamath Proof Explorer


Theorem seqcl2

Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqcl2.1 φ F M C
seqcl2.2 φ x C y D x + ˙ y C
seqcl2.3 φ N M
seqcl2.4 φ x M + 1 N F x D
Assertion seqcl2 φ seq M + ˙ F N C

Proof

Step Hyp Ref Expression
1 seqcl2.1 φ F M C
2 seqcl2.2 φ x C y D x + ˙ y C
3 seqcl2.3 φ N M
4 seqcl2.4 φ x M + 1 N F x D
5 eluzfz2 N M N M N
6 3 5 syl φ N M N
7 eleq1 x = M x M N M M N
8 fveq2 x = M seq M + ˙ F x = seq M + ˙ F M
9 8 eleq1d x = M seq M + ˙ F x C seq M + ˙ F M C
10 7 9 imbi12d x = M x M N seq M + ˙ F x C M M N seq M + ˙ F M C
11 10 imbi2d x = M φ x M N seq M + ˙ F x C φ M M N seq M + ˙ F M C
12 eleq1 x = n x M N n M N
13 fveq2 x = n seq M + ˙ F x = seq M + ˙ F n
14 13 eleq1d x = n seq M + ˙ F x C seq M + ˙ F n C
15 12 14 imbi12d x = n x M N seq M + ˙ F x C n M N seq M + ˙ F n C
16 15 imbi2d x = n φ x M N seq M + ˙ F x C φ n M N seq M + ˙ F n C
17 eleq1 x = n + 1 x M N n + 1 M N
18 fveq2 x = n + 1 seq M + ˙ F x = seq M + ˙ F n + 1
19 18 eleq1d x = n + 1 seq M + ˙ F x C seq M + ˙ F n + 1 C
20 17 19 imbi12d x = n + 1 x M N seq M + ˙ F x C n + 1 M N seq M + ˙ F n + 1 C
21 20 imbi2d x = n + 1 φ x M N seq M + ˙ F x C φ n + 1 M N seq M + ˙ F n + 1 C
22 eleq1 x = N x M N N M N
23 fveq2 x = N seq M + ˙ F x = seq M + ˙ F N
24 23 eleq1d x = N seq M + ˙ F x C seq M + ˙ F N C
25 22 24 imbi12d x = N x M N seq M + ˙ F x C N M N seq M + ˙ F N C
26 25 imbi2d x = N φ x M N seq M + ˙ F x C φ N M N seq M + ˙ F N C
27 seq1 M seq M + ˙ F M = F M
28 27 eleq1d M seq M + ˙ F M C F M C
29 1 28 syl5ibr M φ seq M + ˙ F M C
30 29 a1dd M φ M M N seq M + ˙ F M C
31 peano2fzr n M n + 1 M N n M N
32 31 adantl φ n M n + 1 M N n M N
33 32 expr φ n M n + 1 M N n M N
34 33 imim1d φ n M n M N seq M + ˙ F n C n + 1 M N seq M + ˙ F n C
35 fveq2 x = n + 1 F x = F n + 1
36 35 eleq1d x = n + 1 F x D F n + 1 D
37 4 ralrimiva φ x M + 1 N F x D
38 37 adantr φ n M n + 1 M N x M + 1 N F x D
39 eluzp1p1 n M n + 1 M + 1
40 39 ad2antrl φ n M n + 1 M N n + 1 M + 1
41 elfzuz3 n + 1 M N N n + 1
42 41 ad2antll φ n M n + 1 M N N n + 1
43 elfzuzb n + 1 M + 1 N n + 1 M + 1 N n + 1
44 40 42 43 sylanbrc φ n M n + 1 M N n + 1 M + 1 N
45 36 38 44 rspcdva φ n M n + 1 M N F n + 1 D
46 2 caovclg φ seq M + ˙ F n C F n + 1 D seq M + ˙ F n + ˙ F n + 1 C
47 46 ex φ seq M + ˙ F n C F n + 1 D seq M + ˙ F n + ˙ F n + 1 C
48 47 adantr φ n M n + 1 M N seq M + ˙ F n C F n + 1 D seq M + ˙ F n + ˙ F n + 1 C
49 45 48 mpan2d φ n M n + 1 M N seq M + ˙ F n C seq M + ˙ F n + ˙ F n + 1 C
50 seqp1 n M seq M + ˙ F n + 1 = seq M + ˙ F n + ˙ F n + 1
51 50 ad2antrl φ n M n + 1 M N seq M + ˙ F n + 1 = seq M + ˙ F n + ˙ F n + 1
52 51 eleq1d φ n M n + 1 M N seq M + ˙ F n + 1 C seq M + ˙ F n + ˙ F n + 1 C
53 49 52 sylibrd φ n M n + 1 M N seq M + ˙ F n C seq M + ˙ F n + 1 C
54 34 53 animpimp2impd n M φ n M N seq M + ˙ F n C φ n + 1 M N seq M + ˙ F n + 1 C
55 11 16 21 26 30 54 uzind4 N M φ N M N seq M + ˙ F N C
56 3 55 mpcom φ N M N seq M + ˙ F N C
57 6 56 mpd φ seq M + ˙ F N C