Metamath Proof Explorer


Theorem caovclg

Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014)

Ref Expression
Hypothesis caovclg.1 φxCyDxFyE
Assertion caovclg φACBDAFBE

Proof

Step Hyp Ref Expression
1 caovclg.1 φxCyDxFyE
2 1 ralrimivva φxCyDxFyE
3 oveq1 x=AxFy=AFy
4 3 eleq1d x=AxFyEAFyE
5 oveq2 y=BAFy=AFB
6 5 eleq1d y=BAFyEAFBE
7 4 6 rspc2v ACBDxCyDxFyEAFBE
8 2 7 mpan9 φACBDAFBE