Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | caovclg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 ) | |
| Assertion | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐸 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovclg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 ) | |
| 2 | 1 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 ) | 
| 3 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 ↔ ( 𝐴 𝐹 𝑦 ) ∈ 𝐸 ) ) | 
| 5 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) ∈ 𝐸 ↔ ( 𝐴 𝐹 𝐵 ) ∈ 𝐸 ) ) | 
| 7 | 4 6 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐸 ) ) | 
| 8 | 2 7 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐸 ) |