Metamath Proof Explorer
		
		
		
		Description:  Convert an operation closure law to class notation.  (Contributed by Mario Carneiro, 30-Dec-2014)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						caovclg.1 | 
						⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 𝐹 𝑦 )  ∈  𝐸 )  | 
					
					
						 | 
						 | 
						caovcld.2 | 
						⊢ ( 𝜑  →  𝐴  ∈  𝐶 )  | 
					
					
						 | 
						 | 
						caovcld.3 | 
						⊢ ( 𝜑  →  𝐵  ∈  𝐷 )  | 
					
				
					 | 
					Assertion | 
					caovcld | 
					⊢  ( 𝜑  →  ( 𝐴 𝐹 𝐵 )  ∈  𝐸 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							caovclg.1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 𝐹 𝑦 )  ∈  𝐸 )  | 
						
						
							| 2 | 
							
								
							 | 
							caovcld.2 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							caovcld.3 | 
							⊢ ( 𝜑  →  𝐵  ∈  𝐷 )  | 
						
						
							| 4 | 
							
								
							 | 
							id | 
							⊢ ( 𝜑  →  𝜑 )  | 
						
						
							| 5 | 
							
								1
							 | 
							caovclg | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 ) )  →  ( 𝐴 𝐹 𝐵 )  ∈  𝐸 )  | 
						
						
							| 6 | 
							
								4 2 3 5
							 | 
							syl12anc | 
							⊢ ( 𝜑  →  ( 𝐴 𝐹 𝐵 )  ∈  𝐸 )  |