Metamath Proof Explorer


Theorem fssd

Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fssd.f
|- ( ph -> F : A --> B )
fssd.b
|- ( ph -> B C_ C )
Assertion fssd
|- ( ph -> F : A --> C )

Proof

Step Hyp Ref Expression
1 fssd.f
 |-  ( ph -> F : A --> B )
2 fssd.b
 |-  ( ph -> B C_ C )
3 fss
 |-  ( ( F : A --> B /\ B C_ C ) -> F : A --> C )
4 1 2 3 syl2anc
 |-  ( ph -> F : A --> C )