Metamath Proof Explorer


Theorem fzp1ss

Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 26-Jul-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzp1ss
|- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) )

Proof

Step Hyp Ref Expression
1 uzid
 |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) )
2 peano2uz
 |-  ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) )
3 fzss1
 |-  ( ( M + 1 ) e. ( ZZ>= ` M ) -> ( ( M + 1 ) ... N ) C_ ( M ... N ) )
4 1 2 3 3syl
 |-  ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) )