Metamath Proof Explorer


Theorem zcnd

Description: An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis zred.1
|- ( ph -> A e. ZZ )
Assertion zcnd
|- ( ph -> A e. CC )

Proof

Step Hyp Ref Expression
1 zred.1
 |-  ( ph -> A e. ZZ )
2 1 zred
 |-  ( ph -> A e. RR )
3 2 recnd
 |-  ( ph -> A e. CC )