Metamath Proof Explorer


Theorem zcnd

Description: An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis zred.1 ( 𝜑𝐴 ∈ ℤ )
Assertion zcnd ( 𝜑𝐴 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 zred.1 ( 𝜑𝐴 ∈ ℤ )
2 1 zred ( 𝜑𝐴 ∈ ℝ )
3 2 recnd ( 𝜑𝐴 ∈ ℂ )