Metamath Proof Explorer


Theorem fveq2i

Description: Equality inference for function value. (Contributed by NM, 28-Jul-1999)

Ref Expression
Hypothesis fveq2i.1
|- A = B
Assertion fveq2i
|- ( F ` A ) = ( F ` B )

Proof

Step Hyp Ref Expression
1 fveq2i.1
 |-  A = B
2 fveq2
 |-  ( A = B -> ( F ` A ) = ( F ` B ) )
3 1 2 ax-mp
 |-  ( F ` A ) = ( F ` B )