Step |
Hyp |
Ref |
Expression |
1 |
|
seqf1o.1 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
2 |
|
seqf1o.2 |
|- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
3 |
|
seqf1o.3 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
4 |
|
seqf1o.4 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
5 |
|
seqf1o.5 |
|- ( ph -> C C_ S ) |
6 |
|
seqf1o.6 |
|- ( ph -> F : ( M ... N ) -1-1-onto-> ( M ... N ) ) |
7 |
|
seqf1o.7 |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( G ` x ) e. C ) |
8 |
|
seqf1o.8 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( G ` ( F ` k ) ) ) |
9 |
7
|
fmpttd |
|- ( ph -> ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) |
10 |
|
oveq2 |
|- ( x = M -> ( M ... x ) = ( M ... M ) ) |
11 |
|
f1oeq23 |
|- ( ( ( M ... x ) = ( M ... M ) /\ ( M ... x ) = ( M ... M ) ) -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... M ) -1-1-onto-> ( M ... M ) ) ) |
12 |
10 10 11
|
syl2anc |
|- ( x = M -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... M ) -1-1-onto-> ( M ... M ) ) ) |
13 |
10
|
feq2d |
|- ( x = M -> ( g : ( M ... x ) --> C <-> g : ( M ... M ) --> C ) ) |
14 |
12 13
|
anbi12d |
|- ( x = M -> ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) <-> ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) ) |
15 |
|
fveq2 |
|- ( x = M -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , ( g o. f ) ) ` M ) ) |
16 |
|
fveq2 |
|- ( x = M -> ( seq M ( .+ , g ) ` x ) = ( seq M ( .+ , g ) ` M ) ) |
17 |
15 16
|
eqeq12d |
|- ( x = M -> ( ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) <-> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) |
18 |
14 17
|
imbi12d |
|- ( x = M -> ( ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) ) |
19 |
18
|
2albidv |
|- ( x = M -> ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> A. g A. f ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) ) |
20 |
19
|
imbi2d |
|- ( x = M -> ( ( ph -> A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) ) <-> ( ph -> A. g A. f ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) ) ) |
21 |
|
oveq2 |
|- ( x = k -> ( M ... x ) = ( M ... k ) ) |
22 |
|
f1oeq23 |
|- ( ( ( M ... x ) = ( M ... k ) /\ ( M ... x ) = ( M ... k ) ) -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... k ) -1-1-onto-> ( M ... k ) ) ) |
23 |
21 21 22
|
syl2anc |
|- ( x = k -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... k ) -1-1-onto-> ( M ... k ) ) ) |
24 |
21
|
feq2d |
|- ( x = k -> ( g : ( M ... x ) --> C <-> g : ( M ... k ) --> C ) ) |
25 |
23 24
|
anbi12d |
|- ( x = k -> ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) <-> ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) ) ) |
26 |
|
fveq2 |
|- ( x = k -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , ( g o. f ) ) ` k ) ) |
27 |
|
fveq2 |
|- ( x = k -> ( seq M ( .+ , g ) ` x ) = ( seq M ( .+ , g ) ` k ) ) |
28 |
26 27
|
eqeq12d |
|- ( x = k -> ( ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) <-> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) |
29 |
25 28
|
imbi12d |
|- ( x = k -> ( ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) ) |
30 |
29
|
2albidv |
|- ( x = k -> ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) ) |
31 |
30
|
imbi2d |
|- ( x = k -> ( ( ph -> A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) ) <-> ( ph -> A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) ) ) |
32 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( M ... x ) = ( M ... ( k + 1 ) ) ) |
33 |
|
f1oeq23 |
|- ( ( ( M ... x ) = ( M ... ( k + 1 ) ) /\ ( M ... x ) = ( M ... ( k + 1 ) ) ) -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) ) ) |
34 |
32 32 33
|
syl2anc |
|- ( x = ( k + 1 ) -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) ) ) |
35 |
32
|
feq2d |
|- ( x = ( k + 1 ) -> ( g : ( M ... x ) --> C <-> g : ( M ... ( k + 1 ) ) --> C ) ) |
36 |
34 35
|
anbi12d |
|- ( x = ( k + 1 ) -> ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) <-> ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) ) |
37 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) ) |
38 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( seq M ( .+ , g ) ` x ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) |
39 |
37 38
|
eqeq12d |
|- ( x = ( k + 1 ) -> ( ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) <-> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) |
40 |
36 39
|
imbi12d |
|- ( x = ( k + 1 ) -> ( ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
41 |
40
|
2albidv |
|- ( x = ( k + 1 ) -> ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
42 |
41
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( ph -> A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) ) <-> ( ph -> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) ) |
43 |
|
oveq2 |
|- ( x = N -> ( M ... x ) = ( M ... N ) ) |
44 |
|
f1oeq23 |
|- ( ( ( M ... x ) = ( M ... N ) /\ ( M ... x ) = ( M ... N ) ) -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... N ) -1-1-onto-> ( M ... N ) ) ) |
45 |
43 43 44
|
syl2anc |
|- ( x = N -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... N ) -1-1-onto-> ( M ... N ) ) ) |
46 |
43
|
feq2d |
|- ( x = N -> ( g : ( M ... x ) --> C <-> g : ( M ... N ) --> C ) ) |
47 |
45 46
|
anbi12d |
|- ( x = N -> ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) <-> ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) ) ) |
48 |
|
fveq2 |
|- ( x = N -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , ( g o. f ) ) ` N ) ) |
49 |
|
fveq2 |
|- ( x = N -> ( seq M ( .+ , g ) ` x ) = ( seq M ( .+ , g ) ` N ) ) |
50 |
48 49
|
eqeq12d |
|- ( x = N -> ( ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) <-> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) |
51 |
47 50
|
imbi12d |
|- ( x = N -> ( ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) ) |
52 |
51
|
2albidv |
|- ( x = N -> ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) ) |
53 |
52
|
imbi2d |
|- ( x = N -> ( ( ph -> A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) ) <-> ( ph -> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) ) ) |
54 |
|
f1of |
|- ( f : ( M ... M ) -1-1-onto-> ( M ... M ) -> f : ( M ... M ) --> ( M ... M ) ) |
55 |
54
|
adantr |
|- ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> f : ( M ... M ) --> ( M ... M ) ) |
56 |
|
elfz3 |
|- ( M e. ZZ -> M e. ( M ... M ) ) |
57 |
|
fvco3 |
|- ( ( f : ( M ... M ) --> ( M ... M ) /\ M e. ( M ... M ) ) -> ( ( g o. f ) ` M ) = ( g ` ( f ` M ) ) ) |
58 |
55 56 57
|
syl2anr |
|- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( ( g o. f ) ` M ) = ( g ` ( f ` M ) ) ) |
59 |
|
ffvelrn |
|- ( ( f : ( M ... M ) --> ( M ... M ) /\ M e. ( M ... M ) ) -> ( f ` M ) e. ( M ... M ) ) |
60 |
54 56 59
|
syl2anr |
|- ( ( M e. ZZ /\ f : ( M ... M ) -1-1-onto-> ( M ... M ) ) -> ( f ` M ) e. ( M ... M ) ) |
61 |
|
fzsn |
|- ( M e. ZZ -> ( M ... M ) = { M } ) |
62 |
61
|
eleq2d |
|- ( M e. ZZ -> ( ( f ` M ) e. ( M ... M ) <-> ( f ` M ) e. { M } ) ) |
63 |
|
elsni |
|- ( ( f ` M ) e. { M } -> ( f ` M ) = M ) |
64 |
62 63
|
syl6bi |
|- ( M e. ZZ -> ( ( f ` M ) e. ( M ... M ) -> ( f ` M ) = M ) ) |
65 |
64
|
imp |
|- ( ( M e. ZZ /\ ( f ` M ) e. ( M ... M ) ) -> ( f ` M ) = M ) |
66 |
60 65
|
syldan |
|- ( ( M e. ZZ /\ f : ( M ... M ) -1-1-onto-> ( M ... M ) ) -> ( f ` M ) = M ) |
67 |
66
|
adantrr |
|- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( f ` M ) = M ) |
68 |
67
|
fveq2d |
|- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( g ` ( f ` M ) ) = ( g ` M ) ) |
69 |
58 68
|
eqtrd |
|- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( ( g o. f ) ` M ) = ( g ` M ) ) |
70 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( ( g o. f ) ` M ) ) |
71 |
70
|
adantr |
|- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( ( g o. f ) ` M ) ) |
72 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , g ) ` M ) = ( g ` M ) ) |
73 |
72
|
adantr |
|- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( seq M ( .+ , g ) ` M ) = ( g ` M ) ) |
74 |
69 71 73
|
3eqtr4d |
|- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) |
75 |
74
|
ex |
|- ( M e. ZZ -> ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) |
76 |
75
|
alrimivv |
|- ( M e. ZZ -> A. g A. f ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) |
77 |
76
|
a1d |
|- ( M e. ZZ -> ( ph -> A. g A. f ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) ) |
78 |
|
f1oeq1 |
|- ( f = t -> ( f : ( M ... k ) -1-1-onto-> ( M ... k ) <-> t : ( M ... k ) -1-1-onto-> ( M ... k ) ) ) |
79 |
|
feq1 |
|- ( g = s -> ( g : ( M ... k ) --> C <-> s : ( M ... k ) --> C ) ) |
80 |
78 79
|
bi2anan9r |
|- ( ( g = s /\ f = t ) -> ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) <-> ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) ) ) |
81 |
|
coeq1 |
|- ( g = s -> ( g o. f ) = ( s o. f ) ) |
82 |
|
coeq2 |
|- ( f = t -> ( s o. f ) = ( s o. t ) ) |
83 |
81 82
|
sylan9eq |
|- ( ( g = s /\ f = t ) -> ( g o. f ) = ( s o. t ) ) |
84 |
83
|
seqeq3d |
|- ( ( g = s /\ f = t ) -> seq M ( .+ , ( g o. f ) ) = seq M ( .+ , ( s o. t ) ) ) |
85 |
84
|
fveq1d |
|- ( ( g = s /\ f = t ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , ( s o. t ) ) ` k ) ) |
86 |
|
simpl |
|- ( ( g = s /\ f = t ) -> g = s ) |
87 |
86
|
seqeq3d |
|- ( ( g = s /\ f = t ) -> seq M ( .+ , g ) = seq M ( .+ , s ) ) |
88 |
87
|
fveq1d |
|- ( ( g = s /\ f = t ) -> ( seq M ( .+ , g ) ` k ) = ( seq M ( .+ , s ) ` k ) ) |
89 |
85 88
|
eqeq12d |
|- ( ( g = s /\ f = t ) -> ( ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) <-> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) ) |
90 |
80 89
|
imbi12d |
|- ( ( g = s /\ f = t ) -> ( ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) <-> ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) ) ) |
91 |
90
|
cbval2vw |
|- ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) <-> A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) ) |
92 |
|
simplll |
|- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> ph ) |
93 |
92 1
|
sylan |
|- ( ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
94 |
92 2
|
sylan |
|- ( ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
95 |
92 3
|
sylan |
|- ( ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
96 |
|
simpllr |
|- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> k e. ( ZZ>= ` M ) ) |
97 |
92 5
|
syl |
|- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> C C_ S ) |
98 |
|
simprl |
|- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) ) |
99 |
|
simprr |
|- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> g : ( M ... ( k + 1 ) ) --> C ) |
100 |
|
eqid |
|- ( w e. ( M ... k ) |-> ( f ` if ( w < ( `' f ` ( k + 1 ) ) , w , ( w + 1 ) ) ) ) = ( w e. ( M ... k ) |-> ( f ` if ( w < ( `' f ` ( k + 1 ) ) , w , ( w + 1 ) ) ) ) |
101 |
|
eqid |
|- ( `' f ` ( k + 1 ) ) = ( `' f ` ( k + 1 ) ) |
102 |
|
simplr |
|- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) |
103 |
102 91
|
sylib |
|- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) ) |
104 |
93 94 95 96 97 98 99 100 101 103
|
seqf1olem2 |
|- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) |
105 |
104
|
exp31 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) -> ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
106 |
91 105
|
syl5bir |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) -> ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
107 |
106
|
alrimdv |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) -> A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
108 |
107
|
alrimdv |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) -> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
109 |
91 108
|
syl5bi |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) -> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
110 |
109
|
expcom |
|- ( k e. ( ZZ>= ` M ) -> ( ph -> ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) -> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) ) |
111 |
110
|
a2d |
|- ( k e. ( ZZ>= ` M ) -> ( ( ph -> A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) -> ( ph -> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) ) |
112 |
20 31 42 53 77 111
|
uzind4 |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) ) |
113 |
4 112
|
mpcom |
|- ( ph -> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) |
114 |
|
fvex |
|- ( G ` x ) e. _V |
115 |
|
eqid |
|- ( x e. ( M ... N ) |-> ( G ` x ) ) = ( x e. ( M ... N ) |-> ( G ` x ) ) |
116 |
114 115
|
fnmpti |
|- ( x e. ( M ... N ) |-> ( G ` x ) ) Fn ( M ... N ) |
117 |
|
fzfi |
|- ( M ... N ) e. Fin |
118 |
|
fnfi |
|- ( ( ( x e. ( M ... N ) |-> ( G ` x ) ) Fn ( M ... N ) /\ ( M ... N ) e. Fin ) -> ( x e. ( M ... N ) |-> ( G ` x ) ) e. Fin ) |
119 |
116 117 118
|
mp2an |
|- ( x e. ( M ... N ) |-> ( G ` x ) ) e. Fin |
120 |
|
f1of |
|- ( F : ( M ... N ) -1-1-onto-> ( M ... N ) -> F : ( M ... N ) --> ( M ... N ) ) |
121 |
6 120
|
syl |
|- ( ph -> F : ( M ... N ) --> ( M ... N ) ) |
122 |
|
ovexd |
|- ( ph -> ( M ... N ) e. _V ) |
123 |
|
fex2 |
|- ( ( F : ( M ... N ) --> ( M ... N ) /\ ( M ... N ) e. _V /\ ( M ... N ) e. _V ) -> F e. _V ) |
124 |
121 122 122 123
|
syl3anc |
|- ( ph -> F e. _V ) |
125 |
|
f1oeq1 |
|- ( f = F -> ( f : ( M ... N ) -1-1-onto-> ( M ... N ) <-> F : ( M ... N ) -1-1-onto-> ( M ... N ) ) ) |
126 |
|
feq1 |
|- ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) -> ( g : ( M ... N ) --> C <-> ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) ) |
127 |
125 126
|
bi2anan9r |
|- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) <-> ( F : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) ) ) |
128 |
|
coeq1 |
|- ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) -> ( g o. f ) = ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. f ) ) |
129 |
|
coeq2 |
|- ( f = F -> ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. f ) = ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) |
130 |
128 129
|
sylan9eq |
|- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( g o. f ) = ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) |
131 |
130
|
seqeq3d |
|- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> seq M ( .+ , ( g o. f ) ) = seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ) |
132 |
131
|
fveq1d |
|- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) ) |
133 |
|
simpl |
|- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> g = ( x e. ( M ... N ) |-> ( G ` x ) ) ) |
134 |
133
|
seqeq3d |
|- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> seq M ( .+ , g ) = seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ) |
135 |
134
|
fveq1d |
|- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( seq M ( .+ , g ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) |
136 |
132 135
|
eqeq12d |
|- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) <-> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) ) |
137 |
127 136
|
imbi12d |
|- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) <-> ( ( F : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) ) ) |
138 |
137
|
spc2gv |
|- ( ( ( x e. ( M ... N ) |-> ( G ` x ) ) e. Fin /\ F e. _V ) -> ( A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) -> ( ( F : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) ) ) |
139 |
119 124 138
|
sylancr |
|- ( ph -> ( A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) -> ( ( F : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) ) ) |
140 |
113 139
|
mpd |
|- ( ph -> ( ( F : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) ) |
141 |
6 9 140
|
mp2and |
|- ( ph -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) |
142 |
121
|
ffvelrnda |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. ( M ... N ) ) |
143 |
|
fveq2 |
|- ( x = ( F ` k ) -> ( G ` x ) = ( G ` ( F ` k ) ) ) |
144 |
|
fvex |
|- ( G ` ( F ` k ) ) e. _V |
145 |
143 115 144
|
fvmpt |
|- ( ( F ` k ) e. ( M ... N ) -> ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` ( F ` k ) ) = ( G ` ( F ` k ) ) ) |
146 |
142 145
|
syl |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` ( F ` k ) ) = ( G ` ( F ` k ) ) ) |
147 |
|
fvco3 |
|- ( ( F : ( M ... N ) --> ( M ... N ) /\ k e. ( M ... N ) ) -> ( ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ` k ) = ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` ( F ` k ) ) ) |
148 |
121 147
|
sylan |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ` k ) = ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` ( F ` k ) ) ) |
149 |
146 148 8
|
3eqtr4d |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ` k ) = ( H ` k ) ) |
150 |
4 149
|
seqfveq |
|- ( ph -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , H ) ` N ) ) |
151 |
|
fveq2 |
|- ( x = k -> ( G ` x ) = ( G ` k ) ) |
152 |
|
fvex |
|- ( G ` k ) e. _V |
153 |
151 115 152
|
fvmpt |
|- ( k e. ( M ... N ) -> ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` k ) = ( G ` k ) ) |
154 |
153
|
adantl |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` k ) = ( G ` k ) ) |
155 |
4 154
|
seqfveq |
|- ( ph -> ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |
156 |
141 150 155
|
3eqtr3d |
|- ( ph -> ( seq M ( .+ , H ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |