Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004) (Revised by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | npcan | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + B ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
2 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
3 | 1 2 | addcomd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + B ) = ( B + ( A - B ) ) ) |
4 | pncan3 | |- ( ( B e. CC /\ A e. CC ) -> ( B + ( A - B ) ) = A ) |
|
5 | 4 | ancoms | |- ( ( A e. CC /\ B e. CC ) -> ( B + ( A - B ) ) = A ) |
6 | 3 5 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + B ) = A ) |