Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
2 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
3 |
|
letric |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ∨ 𝑁 ≤ 𝑀 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ∨ 𝑁 ≤ 𝑀 ) ) |
5 |
|
eluz |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑁 ) ) |
6 |
|
eluz |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ 𝑀 ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ 𝑀 ) ) |
8 |
5 7
|
orbi12d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ↔ ( 𝑀 ≤ 𝑁 ∨ 𝑁 ≤ 𝑀 ) ) ) |
9 |
4 8
|
mpbird |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |