Metamath Proof Explorer


Theorem uztric

Description: Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005) (Revised by Mario Carneiro, 25-Jun-2013)

Ref Expression
Assertion uztric ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ𝑀 ) ∨ 𝑀 ∈ ( ℤ𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 zre ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ )
2 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
3 letric ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀𝑁𝑁𝑀 ) )
4 1 2 3 syl2an ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀𝑁𝑁𝑀 ) )
5 eluz ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ𝑀 ) ↔ 𝑀𝑁 ) )
6 eluz ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ∈ ( ℤ𝑁 ) ↔ 𝑁𝑀 ) )
7 6 ancoms ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ( ℤ𝑁 ) ↔ 𝑁𝑀 ) )
8 5 7 orbi12d ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 ∈ ( ℤ𝑀 ) ∨ 𝑀 ∈ ( ℤ𝑁 ) ) ↔ ( 𝑀𝑁𝑁𝑀 ) ) )
9 4 8 mpbird ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ𝑀 ) ∨ 𝑀 ∈ ( ℤ𝑁 ) ) )