Description: Deduction joining two equivalences to form equivalence of disjunctions. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bi12d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| bi12d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) | ||
| Assertion | orbi12d | ⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ) ↔ ( 𝜒 ∨ 𝜏 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bi12d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | bi12d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) | |
| 3 | 1 | orbi1d | ⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ) ↔ ( 𝜒 ∨ 𝜃 ) ) ) | 
| 4 | 2 | orbi2d | ⊢ ( 𝜑 → ( ( 𝜒 ∨ 𝜃 ) ↔ ( 𝜒 ∨ 𝜏 ) ) ) | 
| 5 | 3 4 | bitrd | ⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ) ↔ ( 𝜒 ∨ 𝜏 ) ) ) |