Description: Deduction joining two equivalences to form equivalence of disjunctions. (Contributed by NM, 21-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
bi12d.2 | |- ( ph -> ( th <-> ta ) ) |
||
Assertion | orbi12d | |- ( ph -> ( ( ps \/ th ) <-> ( ch \/ ta ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | bi12d.2 | |- ( ph -> ( th <-> ta ) ) |
|
3 | 1 | orbi1d | |- ( ph -> ( ( ps \/ th ) <-> ( ch \/ th ) ) ) |
4 | 2 | orbi2d | |- ( ph -> ( ( ch \/ th ) <-> ( ch \/ ta ) ) ) |
5 | 3 4 | bitrd | |- ( ph -> ( ( ps \/ th ) <-> ( ch \/ ta ) ) ) |