Metamath Proof Explorer


Theorem orbi12d

Description: Deduction joining two equivalences to form equivalence of disjunctions. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses bi12d.1
|- ( ph -> ( ps <-> ch ) )
bi12d.2
|- ( ph -> ( th <-> ta ) )
Assertion orbi12d
|- ( ph -> ( ( ps \/ th ) <-> ( ch \/ ta ) ) )

Proof

Step Hyp Ref Expression
1 bi12d.1
 |-  ( ph -> ( ps <-> ch ) )
2 bi12d.2
 |-  ( ph -> ( th <-> ta ) )
3 1 orbi1d
 |-  ( ph -> ( ( ps \/ th ) <-> ( ch \/ th ) ) )
4 2 orbi2d
 |-  ( ph -> ( ( ch \/ th ) <-> ( ch \/ ta ) ) )
5 3 4 bitrd
 |-  ( ph -> ( ( ps \/ th ) <-> ( ch \/ ta ) ) )