Metamath Proof Explorer


Theorem letric

Description: Trichotomy law. (Contributed by NM, 18-Aug-1999) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion letric ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 ltnle ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ¬ 𝐴𝐵 ) )
2 ltle ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴𝐵𝐴 ) )
3 1 2 sylbird ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ¬ 𝐴𝐵𝐵𝐴 ) )
4 3 orrd ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴𝐵𝐵𝐴 ) )
5 4 ancoms ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵𝐵𝐴 ) )