Step |
Hyp |
Ref |
Expression |
1 |
|
ltle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) |
2 |
|
ltne |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ≠ 𝐴 ) |
3 |
2
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 𝐵 → 𝐵 ≠ 𝐴 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → 𝐵 ≠ 𝐴 ) ) |
5 |
1 4
|
jcad |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ) ) |
6 |
|
leloe |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
7 |
|
df-ne |
⊢ ( 𝐵 ≠ 𝐴 ↔ ¬ 𝐵 = 𝐴 ) |
8 |
|
pm2.24 |
⊢ ( 𝐵 = 𝐴 → ( ¬ 𝐵 = 𝐴 → 𝐴 < 𝐵 ) ) |
9 |
8
|
eqcoms |
⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐵 = 𝐴 → 𝐴 < 𝐵 ) ) |
10 |
7 9
|
syl5bi |
⊢ ( 𝐴 = 𝐵 → ( 𝐵 ≠ 𝐴 → 𝐴 < 𝐵 ) ) |
11 |
10
|
jao1i |
⊢ ( ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) → ( 𝐵 ≠ 𝐴 → 𝐴 < 𝐵 ) ) |
12 |
6 11
|
syl6bi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐵 ≠ 𝐴 → 𝐴 < 𝐵 ) ) ) |
13 |
12
|
impd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) → 𝐴 < 𝐵 ) ) |
14 |
5 13
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ) ) |