Metamath Proof Explorer


Theorem ltlen

Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999)

Ref Expression
Assertion ltlen ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ltle ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴𝐵 ) )
2 ltne ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵𝐴 )
3 2 ex ( 𝐴 ∈ ℝ → ( 𝐴 < 𝐵𝐵𝐴 ) )
4 3 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐵𝐴 ) )
5 1 4 jcad ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐴𝐵𝐵𝐴 ) ) )
6 leloe ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) ) )
7 df-ne ( 𝐵𝐴 ↔ ¬ 𝐵 = 𝐴 )
8 pm2.24 ( 𝐵 = 𝐴 → ( ¬ 𝐵 = 𝐴𝐴 < 𝐵 ) )
9 8 eqcoms ( 𝐴 = 𝐵 → ( ¬ 𝐵 = 𝐴𝐴 < 𝐵 ) )
10 7 9 syl5bi ( 𝐴 = 𝐵 → ( 𝐵𝐴𝐴 < 𝐵 ) )
11 10 jao1i ( ( 𝐴 < 𝐵𝐴 = 𝐵 ) → ( 𝐵𝐴𝐴 < 𝐵 ) )
12 6 11 syl6bi ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 → ( 𝐵𝐴𝐴 < 𝐵 ) ) )
13 12 impd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴𝐵𝐵𝐴 ) → 𝐴 < 𝐵 ) )
14 5 13 impbid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) ) )