| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltle | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> A <_ B ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ltne | 
							 |-  ( ( A e. RR /\ A < B ) -> B =/= A )  | 
						
						
							| 3 | 
							
								2
							 | 
							ex | 
							 |-  ( A e. RR -> ( A < B -> B =/= A ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> B =/= A ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							jcad | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> ( A <_ B /\ B =/= A ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							leloe | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-ne | 
							 |-  ( B =/= A <-> -. B = A )  | 
						
						
							| 8 | 
							
								
							 | 
							pm2.24 | 
							 |-  ( B = A -> ( -. B = A -> A < B ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							eqcoms | 
							 |-  ( A = B -> ( -. B = A -> A < B ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							biimtrid | 
							 |-  ( A = B -> ( B =/= A -> A < B ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							jao1i | 
							 |-  ( ( A < B \/ A = B ) -> ( B =/= A -> A < B ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							biimtrdi | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( B =/= A -> A < B ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							impd | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( ( A <_ B /\ B =/= A ) -> A < B ) )  | 
						
						
							| 14 | 
							
								5 13
							 | 
							impbid | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( A <_ B /\ B =/= A ) ) )  |