Metamath Proof Explorer


Theorem ltlen

Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999)

Ref Expression
Assertion ltlen ABA<BABBA

Proof

Step Hyp Ref Expression
1 ltle ABA<BAB
2 ltne AA<BBA
3 2 ex AA<BBA
4 3 adantr ABA<BBA
5 1 4 jcad ABA<BABBA
6 leloe ABABA<BA=B
7 df-ne BA¬B=A
8 pm2.24 B=A¬B=AA<B
9 8 eqcoms A=B¬B=AA<B
10 7 9 biimtrid A=BBAA<B
11 10 jao1i A<BA=BBAA<B
12 6 11 biimtrdi ABABBAA<B
13 12 impd ABABBAA<B
14 5 13 impbid ABA<BABBA