Metamath Proof Explorer


Theorem eqle

Description: Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005)

Ref Expression
Assertion eqle AA=BAB

Proof

Step Hyp Ref Expression
1 leid AAA
2 breq2 A=BAAAB
3 2 biimpac AAA=BAB
4 1 3 sylan AA=BAB