Metamath Proof Explorer


Definition df-isom

Description: Define the isomorphism predicate. We read this as " H is an R , S isomorphism of A onto B ". Normally, R and S are ordering relations on A and B respectively. Definition 6.28 of TakeutiZaring p. 32, whose notation is the same as ours except that R and S are subscripts. (Contributed by NM, 4-Mar-1997)

Ref Expression
Assertion df-isom HIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cH classH
1 cR classR
2 cS classS
3 cA classA
4 cB classB
5 3 4 1 2 0 wiso wffHIsomR,SAB
6 3 4 0 wf1o wffH:A1-1 ontoB
7 vx setvarx
8 vy setvary
9 7 cv setvarx
10 8 cv setvary
11 9 10 1 wbr wffxRy
12 9 0 cfv classHx
13 10 0 cfv classHy
14 12 13 2 wbr wffHxSHy
15 11 14 wb wffxRyHxSHy
16 15 8 3 wral wffyAxRyHxSHy
17 16 7 3 wral wffxAyAxRyHxSHy
18 6 17 wa wffH:A1-1 ontoBxAyAxRyHxSHy
19 5 18 wb wffHIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy