| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							zsum.1 | 
							 |-  Z = ( ZZ>= ` M )  | 
						
						
							| 2 | 
							
								
							 | 
							zsum.2 | 
							 |-  ( ph -> M e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							zsum.3 | 
							 |-  ( ph -> A C_ Z )  | 
						
						
							| 4 | 
							
								
							 | 
							zsum.4 | 
							 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 0 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							zsum.5 | 
							 |-  ( ( ph /\ k e. A ) -> B e. CC )  | 
						
						
							| 6 | 
							
								
							 | 
							eleq1w | 
							 |-  ( n = i -> ( n e. A <-> i e. A ) )  | 
						
						
							| 7 | 
							
								
							 | 
							csbeq1 | 
							 |-  ( n = i -> [_ n / k ]_ B = [_ i / k ]_ B )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							ifbieq1d | 
							 |-  ( n = i -> if ( n e. A , [_ n / k ]_ B , 0 ) = if ( i e. A , [_ i / k ]_ B , 0 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							cbvmptv | 
							 |-  ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) = ( i e. ZZ |-> if ( i e. A , [_ i / k ]_ B , 0 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> ph )  | 
						
						
							| 11 | 
							
								5
							 | 
							ralrimiva | 
							 |-  ( ph -> A. k e. A B e. CC )  | 
						
						
							| 12 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ k [_ i / k ]_ B  | 
						
						
							| 13 | 
							
								12
							 | 
							nfel1 | 
							 |-  F/ k [_ i / k ]_ B e. CC  | 
						
						
							| 14 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( k = i -> B = [_ i / k ]_ B )  | 
						
						
							| 15 | 
							
								14
							 | 
							eleq1d | 
							 |-  ( k = i -> ( B e. CC <-> [_ i / k ]_ B e. CC ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							rspc | 
							 |-  ( i e. A -> ( A. k e. A B e. CC -> [_ i / k ]_ B e. CC ) )  | 
						
						
							| 17 | 
							
								11 16
							 | 
							syl5 | 
							 |-  ( i e. A -> ( ph -> [_ i / k ]_ B e. CC ) )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							mpan9 | 
							 |-  ( ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) /\ i e. A ) -> [_ i / k ]_ B e. CC )  | 
						
						
							| 19 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> m e. ZZ )  | 
						
						
							| 20 | 
							
								2
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> M e. ZZ )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> A C_ ( ZZ>= ` m ) )  | 
						
						
							| 22 | 
							
								3 1
							 | 
							sseqtrdi | 
							 |-  ( ph -> A C_ ( ZZ>= ` M ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> A C_ ( ZZ>= ` M ) )  | 
						
						
							| 24 | 
							
								9 18 19 20 21 23
							 | 
							sumrb | 
							 |-  ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							biimpd | 
							 |-  ( ( ( ph /\ m e. ZZ ) /\ A C_ ( ZZ>= ` m ) ) -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							expimpd | 
							 |-  ( ( ph /\ m e. ZZ ) -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							rexlimdva | 
							 |-  ( ph -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 28 | 
							
								3
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> A C_ Z )  | 
						
						
							| 29 | 
							
								
							 | 
							uzssz | 
							 |-  ( ZZ>= ` M ) C_ ZZ  | 
						
						
							| 30 | 
							
								1 29
							 | 
							eqsstri | 
							 |-  Z C_ ZZ  | 
						
						
							| 31 | 
							
								
							 | 
							zssre | 
							 |-  ZZ C_ RR  | 
						
						
							| 32 | 
							
								30 31
							 | 
							sstri | 
							 |-  Z C_ RR  | 
						
						
							| 33 | 
							
								
							 | 
							ltso | 
							 |-  < Or RR  | 
						
						
							| 34 | 
							
								
							 | 
							soss | 
							 |-  ( Z C_ RR -> ( < Or RR -> < Or Z ) )  | 
						
						
							| 35 | 
							
								32 33 34
							 | 
							mp2 | 
							 |-  < Or Z  | 
						
						
							| 36 | 
							
								
							 | 
							soss | 
							 |-  ( A C_ Z -> ( < Or Z -> < Or A ) )  | 
						
						
							| 37 | 
							
								28 35 36
							 | 
							mpisyl | 
							 |-  ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> < Or A )  | 
						
						
							| 38 | 
							
								
							 | 
							fzfi | 
							 |-  ( 1 ... m ) e. Fin  | 
						
						
							| 39 | 
							
								
							 | 
							ovex | 
							 |-  ( 1 ... m ) e. _V  | 
						
						
							| 40 | 
							
								39
							 | 
							f1oen | 
							 |-  ( f : ( 1 ... m ) -1-1-onto-> A -> ( 1 ... m ) ~~ A )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantl | 
							 |-  ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( 1 ... m ) ~~ A )  | 
						
						
							| 42 | 
							
								41
							 | 
							ensymd | 
							 |-  ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> A ~~ ( 1 ... m ) )  | 
						
						
							| 43 | 
							
								
							 | 
							enfii | 
							 |-  ( ( ( 1 ... m ) e. Fin /\ A ~~ ( 1 ... m ) ) -> A e. Fin )  | 
						
						
							| 44 | 
							
								38 42 43
							 | 
							sylancr | 
							 |-  ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> A e. Fin )  | 
						
						
							| 45 | 
							
								
							 | 
							fz1iso | 
							 |-  ( ( < Or A /\ A e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) )  | 
						
						
							| 46 | 
							
								37 44 45
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) )  | 
						
						
							| 47 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> ph )  | 
						
						
							| 48 | 
							
								47 17
							 | 
							mpan9 | 
							 |-  ( ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) /\ i e. A ) -> [_ i / k ]_ B e. CC )  | 
						
						
							| 49 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = j -> ( f ` n ) = ( f ` j ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							csbeq1d | 
							 |-  ( n = j -> [_ ( f ` n ) / k ]_ B = [_ ( f ` j ) / k ]_ B )  | 
						
						
							| 51 | 
							
								
							 | 
							csbcow | 
							 |-  [_ ( f ` j ) / i ]_ [_ i / k ]_ B = [_ ( f ` j ) / k ]_ B  | 
						
						
							| 52 | 
							
								50 51
							 | 
							eqtr4di | 
							 |-  ( n = j -> [_ ( f ` n ) / k ]_ B = [_ ( f ` j ) / i ]_ [_ i / k ]_ B )  | 
						
						
							| 53 | 
							
								52
							 | 
							cbvmptv | 
							 |-  ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) = ( j e. NN |-> [_ ( f ` j ) / i ]_ [_ i / k ]_ B )  | 
						
						
							| 54 | 
							
								
							 | 
							eqid | 
							 |-  ( j e. NN |-> [_ ( g ` j ) / i ]_ [_ i / k ]_ B ) = ( j e. NN |-> [_ ( g ` j ) / i ]_ [_ i / k ]_ B )  | 
						
						
							| 55 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> m e. NN )  | 
						
						
							| 56 | 
							
								2
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> M e. ZZ )  | 
						
						
							| 57 | 
							
								22
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> A C_ ( ZZ>= ` M ) )  | 
						
						
							| 58 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> f : ( 1 ... m ) -1-1-onto-> A )  | 
						
						
							| 59 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) )  | 
						
						
							| 60 | 
							
								9 48 53 54 55 56 57 58 59
							 | 
							summolem2a | 
							 |-  ( ( ( ph /\ m e. NN ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							expr | 
							 |-  ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							exlimdv | 
							 |-  ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) )  | 
						
						
							| 63 | 
							
								46 62
							 | 
							mpd | 
							 |-  ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) )  | 
						
						
							| 64 | 
							
								
							 | 
							breq2 | 
							 |-  ( x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) -> ( seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) )  | 
						
						
							| 65 | 
							
								63 64
							 | 
							syl5ibrcom | 
							 |-  ( ( ( ph /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							expimpd | 
							 |-  ( ( ph /\ m e. NN ) -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							exlimdv | 
							 |-  ( ( ph /\ m e. NN ) -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							rexlimdva | 
							 |-  ( ph -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 69 | 
							
								27 68
							 | 
							jaod | 
							 |-  ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 70 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> M e. ZZ )  | 
						
						
							| 71 | 
							
								22
							 | 
							adantr | 
							 |-  ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> A C_ ( ZZ>= ` M ) )  | 
						
						
							| 72 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x )  | 
						
						
							| 73 | 
							
								
							 | 
							fveq2 | 
							 |-  ( m = M -> ( ZZ>= ` m ) = ( ZZ>= ` M ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							sseq2d | 
							 |-  ( m = M -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` M ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							seqeq1 | 
							 |-  ( m = M -> seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) = seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							breq1d | 
							 |-  ( m = M -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 77 | 
							
								74 76
							 | 
							anbi12d | 
							 |-  ( m = M -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) <-> ( A C_ ( ZZ>= ` M ) /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							rspcev | 
							 |-  ( ( M e. ZZ /\ ( A C_ ( ZZ>= ` M ) /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 79 | 
							
								70 71 72 78
							 | 
							syl12anc | 
							 |-  ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							orcd | 
							 |-  ( ( ph /\ seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							ex | 
							 |-  ( ph -> ( seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) )  | 
						
						
							| 82 | 
							
								69 81
							 | 
							impbid | 
							 |-  ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) <-> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) )  | 
						
						
							| 83 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. ( ZZ>= ` M ) )  | 
						
						
							| 84 | 
							
								29 83
							 | 
							sselid | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. ZZ )  | 
						
						
							| 85 | 
							
								83 1
							 | 
							eleqtrrdi | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. Z )  | 
						
						
							| 86 | 
							
								4
							 | 
							ralrimiva | 
							 |-  ( ph -> A. k e. Z ( F ` k ) = if ( k e. A , B , 0 ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							adantr | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` M ) ) -> A. k e. Z ( F ` k ) = if ( k e. A , B , 0 ) )  | 
						
						
							| 88 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ k [_ j / k ]_ if ( k e. A , B , 0 )  | 
						
						
							| 89 | 
							
								88
							 | 
							nfeq2 | 
							 |-  F/ k ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 )  | 
						
						
							| 90 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = j -> ( F ` k ) = ( F ` j ) )  | 
						
						
							| 91 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( k = j -> if ( k e. A , B , 0 ) = [_ j / k ]_ if ( k e. A , B , 0 ) )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							eqeq12d | 
							 |-  ( k = j -> ( ( F ` k ) = if ( k e. A , B , 0 ) <-> ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) )  | 
						
						
							| 93 | 
							
								89 92
							 | 
							rspc | 
							 |-  ( j e. Z -> ( A. k e. Z ( F ` k ) = if ( k e. A , B , 0 ) -> ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) ) )  | 
						
						
							| 94 | 
							
								85 87 93
							 | 
							sylc | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( F ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) )  | 
						
						
							| 95 | 
							
								
							 | 
							fvex | 
							 |-  ( F ` j ) e. _V  | 
						
						
							| 96 | 
							
								94 95
							 | 
							eqeltrrdi | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` M ) ) -> [_ j / k ]_ if ( k e. A , B , 0 ) e. _V )  | 
						
						
							| 97 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ n if ( k e. A , B , 0 )  | 
						
						
							| 98 | 
							
								
							 | 
							nfv | 
							 |-  F/ k n e. A  | 
						
						
							| 99 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ k [_ n / k ]_ B  | 
						
						
							| 100 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ k 0  | 
						
						
							| 101 | 
							
								98 99 100
							 | 
							nfif | 
							 |-  F/_ k if ( n e. A , [_ n / k ]_ B , 0 )  | 
						
						
							| 102 | 
							
								
							 | 
							eleq1w | 
							 |-  ( k = n -> ( k e. A <-> n e. A ) )  | 
						
						
							| 103 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( k = n -> B = [_ n / k ]_ B )  | 
						
						
							| 104 | 
							
								102 103
							 | 
							ifbieq1d | 
							 |-  ( k = n -> if ( k e. A , B , 0 ) = if ( n e. A , [_ n / k ]_ B , 0 ) )  | 
						
						
							| 105 | 
							
								97 101 104
							 | 
							cbvmpt | 
							 |-  ( k e. ZZ |-> if ( k e. A , B , 0 ) ) = ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							eqcomi | 
							 |-  ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) = ( k e. ZZ |-> if ( k e. A , B , 0 ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							fvmpts | 
							 |-  ( ( j e. ZZ /\ [_ j / k ]_ if ( k e. A , B , 0 ) e. _V ) -> ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) )  | 
						
						
							| 108 | 
							
								84 96 107
							 | 
							syl2anc | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ` j ) = [_ j / k ]_ if ( k e. A , B , 0 ) )  | 
						
						
							| 109 | 
							
								108 94
							 | 
							eqtr4d | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ` j ) = ( F ` j ) )  | 
						
						
							| 110 | 
							
								2 109
							 | 
							seqfeq | 
							 |-  ( ph -> seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) = seq M ( + , F ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							breq1d | 
							 |-  ( ph -> ( seq M ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq M ( + , F ) ~~> x ) )  | 
						
						
							| 112 | 
							
								82 111
							 | 
							bitrd | 
							 |-  ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) <-> seq M ( + , F ) ~~> x ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							iotabidv | 
							 |-  ( ph -> ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) = ( iota x seq M ( + , F ) ~~> x ) )  | 
						
						
							| 114 | 
							
								
							 | 
							df-sum | 
							 |-  sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) )  | 
						
						
							| 115 | 
							
								
							 | 
							df-fv | 
							 |-  ( ~~> ` seq M ( + , F ) ) = ( iota x seq M ( + , F ) ~~> x )  | 
						
						
							| 116 | 
							
								113 114 115
							 | 
							3eqtr4g | 
							 |-  ( ph -> sum_ k e. A B = ( ~~> ` seq M ( + , F ) ) )  |